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Abstract
In this paper, the nonlinear propagation of the dust-acoustic waves in a strongly
coupled dusty plasma with two-temperature nonthermal ions and transverse
perturbations is governed by a cylindrical Kadomtsev–Petviashvili–Burgers
(KP–Burgers) equation. With the help of the variable-coefficient generalized
projected Ricatti equation expansion method, the cylindrical KP–Burgers
equation is solved and a shock wave solution is obtained. The effects on the
amplitude of the shock wave caused by some important parameters such as ion
nonthermal parameter a and temperature parameters β1, β, etc are shown. The
effects caused by dissipation and transverse perturbations are also discussed. It
also indicates that the dust density hole can form and enlarge as time goes on.

PACS numbers: 52.35.Sb, 52.25.Vy, 05.45.Yv

1. Introduction

Since Rao, Shukla and Yu [1] theoretically predicted the existence of the dust-acoustic waves
(DAW) in an unmagnetized dusty plasma, more and more people have investigated the linear
and nonlinear features of the dust-acoustic waves [2–5]. A number of laboratory experiments
have also verified that DAW can be observed even with naked eyes due to their appearance on
a very long time scale [6, 7]. All these investigations give the properties of one-dimensional
linear and nonlinear waves in a weakly coupled unmagnetized dusty plasma and they are
well understood. However, the physics of strongly coupled plasmas is also of considerable
interest because of its possible applications to white dwarf matter, interior of heavy planets,
plasmas produced by laser compression of matter or in nuclear explosions and nonideal
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plasmas for industrial applications. In a strongly coupled dusty plasma, the intergrain spacing
is of the order of the effective dusty plasma Debye radius and the electrostatic interaction
energy of the shielded grains is much larger than the kinetic energy of the dust grains.
Therefore, the coupling parameter � in a strongly coupled dusty plasma satisfies � > 1, and
for � > �c (critical value) the dust grains form crystalline structures in the dusty plasma
which supports a variety of dust lattice wave (DLW) modes [8], whereas for 1 � � < �c, the
system is in a quasicrystal state; the system supports both longitudinal and transverse modes
[9, 10].

Recently, a number of authors have considered the linear properties of DAW in a
strongly coupled unmagnetized dusty plasma within the framework of either a generalized
hydrodynamic (GH) model [11] or the quasi-localized charge (QLC) approximation [12],
the local field correction (LFC) method [13]. Thereafter, the nonlinear properties of DAW
in a strongly coupled unmagnetized dusty plasma have also been studied. For instance,
Shukla and Stenflo [14] have shown that large-amplitude shear waves can excite vortex-
like dust fluid motions in a strongly coupled dusty plasma and derived the governing
equations for nonlinearly coupled transverse shear waves and zonal winds by employing
the generalized hydrodynamic equations for the dust and Ampère’s law. Shukla and Mamun
[15] have investigated the properties of the shock wave structure in DAW in a strongly
coupled unmagnetized dusty plasma and derived a Korteweg–de Vries–Burgers (KdV–
Burgers) equation by the reductive perturbation technique on the GH equations, which admits
shock solutions. Mamun et al [16] have derived the modified KdV–Burgers equation from a
set of GH equations for strongly correlated grains in a liquid-like state, a Boltzmann electron
distribution and a non-isothermal vortex-like ion distribution. They also give the numerical
solutions of the modified KdV–Burgers equation to provide some salient features of dust-
acoustic shock structures that exist in laboratory dusty plasmas. We extend the model
mentioned in [16] and investigate the nonlinear propagation of DAW in strongly coupled
plasmas with two-temperature nonthermal ions and transverse perturbations in a non-planar
geometry. There are three reasons for us to study this model. First, observations of a
space plasma indicate the presence of nonthermal ion populations. For instance, nonthermal
ions have been observed in and around the Earth’s foreshock [17]. The automatic space
plasma experiment with a rotating analyser (ASPERA) on the Phobos satellite has detected
nonthermal ion fluxes from the upper ionosphere of Mars [18]. Closer to the Earth, fast
nonthermal ions have recently been observed by the Nozomi satellite in the vicinity of the
Moon [19]. Therefore, an increasing interest is arising in investigating nonthermal ions
in a dust plasma. Moreover, the negatively charged dust fluid and ions of two different
temperatures (cold and hot) are the major plasma species in laboratory and space plasmas;
therefore, the dusty plasmas with two-temperature nonthermal ions are much closer to the
situation in real space. Second, many of those previous studies are limited to the one-
dimensional geometry because it is easier and intuitional to study nonlinear waves in a dusty
plasma bounded in the one-dimensional geometry; however, Franz et al [20] have shown
that a purely one-dimensional model cannot account for all observed features in the auroral
region, especially at higher polar altitudes. The transverse perturbations always exist in the
higher dimensional system, and the wave structure deforms by the transverse perturbations.
Therefore, it is necessary for us to take the weakly transverse perturbations into account.
Finally, the results in [21–23] also indicate that the properties of solitary waves in a non-
planar cylindrical/spherical geometry are very different from those in a planar geometry.
Moreover, the waves observed in laboratory devices are certainly not bounded in a planar
geometry but are usually bounded in a non-planar geometry. Summing up all these reasons,
we study the DAW in a strongly dusty plasma with two-temperature nonthermal ions and
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transverse perturbations in a cylindrical geometry but neglect the dust-neutral collision due to
the conclusion obtained by [24] in which they point out that the dust-neutral collision does not
appear to play any direct role in shock formation. Further, we obtain the analytical solution
by symbolic computation and analyse the effects on the amplitude of the dust-acoustic shock
wave caused by different parameters and transverse perturbations as well as the non-planar
geometry.

The paper is organized as follows. In section 2, we present the GH equations governing
the dynamics of the nonlinear DAW consisting of two-temperature nonthermal ions and
adiabatic variational charged dust grains for the strongly coupled dusty plasma. We derive the
cylindrical KP–Burgers equation by means of the reductive perturbation technique in section 3.
In section 4, we give the shock wave solution and discuss the effects caused by nonthermal
ions, transverse perturbations and dissipation. Finally, a conclusion is presented in section 5.

2. Governing equations

We study the dust-acoustic waves (DAW) in the non-planar cylindrical geometry for an
unmagnetized strongly coupled dusty plasma with transverse perturbations. We also assume
that electrons and ions are weakly coupled due to their higher temperatures and smaller electric
charges, compared to the dust grains. The electrons’ number density obeys the Boltzmann
law, while the ions are assumed to be nonthermally distributed. Due to the lower temperature
and larger electric charge, the dust grains are assumed to be strongly coupled. Considering the
transverse perturbations, the dynamics of the DAW in a strongly coupled dusty plasma can be
investigated by means of the well-known GH equations normalized as follows:
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where ud and vd represent the velocity components of the dust particles in the radial and polar
angle directions, i.e. r and θ directions; they are normalized by the effective dust-acoustic speed

Cd =
√

Zd0Teff
md

. The space variables are normalized by the Debye length λDd =
√

Teff
4πe2nd0Zd0

. nd

represents the dust density and Zd refers to the number of charges residing on the dust grain
surface. φ represents the electrostatic wave potential normalized by Teff/e. τm refers to the

viscoelastic relaxation time normalized by the dust plasma period ω−1
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where

µd = 1 +
1

3
u(�) +

�

9

∂u(�)

∂�
(3)

is the compressibility [25], u(�) = Ec/(nd0Td) is a measure of the excess internal
energy of the system and Ec is the correlation energy. For weakly coupled plasmas
(� � 1), u(�) ≈ −(

√
3/2)�3/2, whereas in the range 1 � � � 200, Slattery et al have

analytically derived a relation u(�) ≈ 0.89� + 0.95�1/4 + 0.19�−1/4 − 0.81 [26], where a
small correction term due to finite number of particles is neglected. ηl is the normalized
viscosity coefficient given as

ηl = 1

mdnd0ωpdλ
2
Dd

[
ηb +

4

3
ζb

]
, (4)

where ηb and ζb are transport coefficients of shear and bulk viscosities.
The normalized density of the Boltzmann distributed electron and two-temperature

nonthermally distributed ions ne, nil and nih is given by
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(5)

where ne refers to electrons with temperature Te and equilibrium density ν, nil refers to
ions with low temperature Til and equilibrium density µl, and nih refers to ions with high
temperature Tih and equilibrium density µh, where ν = ne0

Zd0nd0
, µl = nil0

Zd0nd0
, µh = nih0

Zd0nd0
.

The equilibrium condition is nil0 + nih0 = ne0 + Zdnd0, in which ni0, nd0 and ne0 are the
unperturbed ion, dust and electron number densities, respectively. As the ions are assumed
to be nonthermally distributed, the two-temperature ions’ density can be obtained by the
same way as introduced in [24]. In equation (5), a is the ion nonthermal parameter
which determines the number of fast ions. The nonthermally distributed ion density will
reduce to the Boltzmann distribution when a = 0. The other parameters are chosen as
β1 = Til

Te
, β = Til

Tih
, s = Teff

Til
, 1

Teff
= 1

Zdnd0

(
ne0
Te

+ nil0
Til

+ nih0
Tih

)
.

On the other hand, it worth noting that the dust charging time is ∼10−9 s, while the dust
motion time is ∼10−3 s. Thus, the dust charge can quickly reach to the local equilibrium
at which the currents from the electrons and ions to the dust are balanced [28]. The current
balance equation reads

Ie + Iil + Iih ≈ 0, (6)

where the electron grain current can be obtained as follows:

Ie = −eπr2

√
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ν exp

(
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)
, (7)

while the two-temperature nonthermally distributed ions’ currents to dust grains can be
obtained by means of the orbital-motion-limited (OML) approach
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where r is the spherical dust grain of average radius.

3. Derivation of the cylindrical KP–Burgers equation

The reductive perturbation technique (RPT) is a well-known method mostly applied to small-
amplitude nonlinear waves. We apply this technique to derive the cylindrical Kadomtsev–
Petviashvili–Burgers (KP–Burgers) equation for small-amplitude DAW in a strongly coupled
dusty plasma with transverse perturbations. We choose the stretched coordinates ξ =
ε1/2(r − ct), η = ε−1/2θ, τ = ε3/2t, ηl = ε1/2η0, τm = ε1/2τm0. We expand the dependent
variables about their equilibrium values in powers of ε as
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7
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(9)

Substituting equations (5)–(9) into equation (1) and collecting the terms in different powers
of ε, we obtain the following equations of the lowest order in ε:
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The next order of ε gives
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where γ1 was mentioned above and
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If we set a = 0, γ1 and γ2 are consistent with those in [29] where the two-temperature ions are
Boltzmann distributed. In this paper, we have investigated the dust grains with adiabatic dust
charge variation. If γ1, γ2 reduce to zero, then Zd = 1, corresponding to the no dust charge
variation.

Substituting equation (10) into equation (11) yields a cylindrical KP–Burgers equation:
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2 .
It is clear that the adiabatic dust charge variation only affects the nonlinear term and the

dispersive term but has no effect on the transverse perturbations’ term and the dissipative
term. It is worth noting that equation (12) does not contain the effect of τm0 because the terms
containing τm0 vanish or drop out. Therefore, τm0 has nothing to do with the formation of
shock wave structure. As long as the dispersive term and the dissipative term as well as the
nonlinear term are balanced, the shock wave structure forms; otherwise, the soliton forms due
to the balance between the dispersive term and the nonlinear term. Therefore, from equation
(12), we can see that the dust viscosity through dust–dust correlation will cause the dissipation
which finally determines the formation of shock wave structure.
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If the transverse perturbations are neglected, the cylindrical KP–Burgers equation
degenerates into the cylindrical KdV–Burgers equation:

∂φ1
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2τ
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∂ξ 3
− 1

2
η0
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It is still different from the KdV–Burgers equation derived by previous works [15, 16] because
we investigate this in the non-planar geometry instead of the planar geometry.

4. Shock wave solution and analysis of the effects caused by nonthermal ions,
transverse perturbations and dissipation

To the best of our knowledge, the dust-acoustic shock waves in a strongly coupled dusty
plasma are investigated by numerical calculation in previous papers. However, it seems that
the analytical solution is more accurate than the numerical calculation because the latter
always induces an error. Therefore, at present, many new methods are introduced to obtain
the analytical solutions for various equations. It seems that the generalized projected Ricatti
equation expansion method [30] is one of the most effective methods to obtain the analytical
solutions for the variable-coefficient equation. By using this method, we can easily obtain
several analytical solutions for equation (12), such as solitary wave solutions, singularity
solitary wave solutions and triangular function solutions. However, considering that the
singularity solitary wave solutions and triangular function solutions are meaningless in a dusty
plasma, we present only the most typical shock wave solution:
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where R is an arbitrary constant with R � 0, α1(τ ) and α2(τ ) can be chosen as arbitrary
functions varying with τ. A and B are the same as mentioned above.

In the following, according to the figures for the shock wave solution (equation (14)), we
analyse the effects of the plasma parameters such as ion nonthermal parameter a, β1 and β,
etc. The effects of transverse perturbations and dissipation caused by dust viscosity through
dust–dust correlation are also discussed.

It indicates that the ion nonthermal parameter a not only affects the normalized dust
charges Zd but also affects the amplitude (φ) of shock wave structures. When a = 0, Zd and
φ correspond to those of the DAW in the strongly coupled plasma containing two-temperature
Boltzmann distributed ions. When the nonthermal ions exist, the amplitude enlarges and
the shock wave structure becomes steeper. Further, when the ion nonthermal parameter a
exceeds the critical value a∗, the shock wave structure changes from a kink wave structure to
an anti-kink wave structure; after that, the amplitude decreases as the parameter a increases
(see figure 1(a)). According to the solution (equation (14)), the shock wave structure is a kink
wave structure or an anti-kink wave structure depends mainly on the sign of the product of
the coefficient of the nonlinear term and the dispersion term, that is, AB > 0 or AB < 0 in
equation (14). When AB < 0, a kink wave structure is present, otherwise, namely AB > 0,
an anti-kink wave structure is present. Therefore, the critical value a∗ can be determined by

−2c4γ 2
1 + [2µhsc

4β(−1 + α) − 2sc4(νβ1 − µlα + µl) − c2]γ1

− c4µhβ
2s2 + 3 +

(
νβ2

1 s2 − µls
2 + 2γ2

)
c4 = 0.
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Figure 1. (a) The potential φ against ξ with parameters β = 0.1, β1 = 0.4, µl = 0.4, µh = 0.7
for different values of a. Panel (b) shows the potential φ against ξ with parameters a = 0.2,

β = 0.1, µl = 0.4, µh = 0.7 for different values of β1. Panel (c) shows the potential φ against ξ

with parameters a = 0.2, β1 = 0.4, µl = 0.4, µh = 0.7 for different values of β. Panel (d) shows
the potential φ against ξ with parameters a = 0.2, β = 0.1, β1 = 0.4 for different values of µl and
µh. The common parameters for (a)–(d) are η0 = 10, R = 10, α1(τ ) = sin(τ ), α2(τ ) = sin(τ ),

δ1 = 12, δ2 = 8, τ = 2, η = 0.1.

The case containing only one-temperature ions in the dusty plasmas is quite different from
the case containing both the cold and hot ions because they will affect the amplitude of the
shock wave structure. Thus, we investigate the effect of the temperature and density of the
two-temperature ions and find that not only the temperature parameters of the cold and hot
ions (β1 and β) but also the density will affect the amplitude of the shock wave structure. The
amplitude increases as β1 increases (figure 1(b)) but decreases as β increases (figure 1(c)).
Because µl and µh are in direct proportion to unperturbed ions’ density (nil0 and nih0),
increasing nil0 and nih0 will cause the increase of µl and µh. It indicates that the amplitudes
of shock wave structures decrease as nil0 and nih0 increase (figure 1(d)). From above figures,
we can draw a conclusion that the magnitude of the amplitude will be affected by the ion
nonthermal parameter a, temperature parameters of cold and hot ions β1 and β, and the
unperturbed density of hot and cold ions, but has nothing to do with the transverse perturbations.

From figures 2(a) and (b), it is clear that although the transverse perturbations will not
increase or decrease the amplitude, however, they deform the shock wave structure and change
it into a nonstandard one. When the transverse perturbations become larger and cannot be
neglected, then the shock wave structure deforms and forms a parabolic shock wave structure.
Then we plot the evolution figures of the dust density nd (figure 2(c)) by transforming the
coordinates (ξ, η, τ ) back to the cylindrical coordinates (r, θ, t), and then correspondingly to
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Figure 2. Panels (a) and (b) show the shock wave structure with smaller values of η and larger
values of η; the common parameters are a = 0.2, η0 = 10, R = 10, α1(τ ) = 0, α2(τ ) = 0,

δ1 = 12, δ2 = 8, τ = 2, β = 0.1, β1 = 0.4. (c) The evolution figures (t = 10 −→ t = 20 −→
t = 30) of dust density in Cartesian coordinates (x, y) with ε = 0.0008, R = 20, η0 = 10, a =
0.5, β = 0.1, β1 = 0.4, µl = 0.4, µh = 0.7, α1(τ ) = 0, α2(τ ) = 0, δ1 = 12, δ2 = 8.

(This figure is in colour only in the electronic version)

the Cartesian coordinates (x, y, t). It is because the Cartesian coordinates are the reference
frame that experiments in general tend to consider. We find that there exists a dust density hole
which is similar to the dust void. As time goes on, the dust density hole is enlarged. So far,
the dust void has been observed in laboratory plasmas; we hope that the present investigation
would be helpful for the future experiment and observation in strong coupled dusty plasmas
and this phenomenon can be verified in laboratory plasmas in the future. The dust density
holes can be formed due to the effect of transverse perturbations and the effect caused by the
non-planar geometry. Therefore, we cannot find the same structure in the one-dimensional
planar geometry when the transverse perturbation is neglected.

Finally, we investigate the evolution figures of the shock wave structure. The shock wave
solution (equation (14)), which is obtained by means of the generalized projected Ricatti
equation expansion method, depends on the parameters α1(τ ) and α2(τ ) which can be chosen
as arbitrary functions. If α1 and α2 are large enough, the forms of α1 and α2 significantly affect
the evolution figure of the shock wave solution. For instance, if we choose α1 as sinusoid, it is
clear that the kink wave structure moves up and down along a route of sinusoid as time goes
on (figure 3(a)). If we set α1 = 0 and α2 = 0, then the shock wave structure remains stable as
time goes on. Figure 3(b) shows the effect of dissipation. As the dissipation depends mainly
on the parameter η0, we study the variation of amplitude with respect to η0 and find that
the amplitude of the shock wave structure increases as η0 increases, and the shock wave
structure becomes steeper. If the dissipation is neglected, the shock wave structure no longer
exists due to the break of the balance among the dispersive term, the nonlinear term and the
dissipative term, and a new balance between the dispersive term and the nonlinear term will
form which admits the existence of the soliton structure.
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Figure 3. (a) The evolution figure of the shock wave structure with parameters a = 0.2, β = 0.1,

β1 = 0.4, µl = 0.4, µh = 0.7, η0 = 10, R = 10, α1(τ ) = sin(10τ), α2(τ ) = sin(10τ),

δ1 = 12, δ2 = 8. (b) The potential φ against ξ with parameters a = 0.2, β = 0.1, β1 = 0.4,

µl = 0.4, µh = 0.7, R = 10, α1(τ ) = 0, α2(τ ) = 0, δ1 = 12, δ2 = 8, η = 2, τ = 5 for different
values of η0.

5. Conclusion

In this paper, the cylindrical KP–Burgers equation, which describes the nonlinear propagation
of DAW in a strongly coupled dusty plasma with two-temperature nonthermal distributed ions
and transverse perturbations, has been successfully derived. Instead of obtaining the numerical
solutions, we give the analytical solution which is a shock wave solution. According to the
evolution figures, we can draw a conclusion that the amplitude of the shock wave is affected
by ion nonthermal parameter a, temperature parameters β1, β and the density of the two-
temperature ions; that is, φ increases as a, β1 and nil0, nih0 increase, while decreases as β

increases. The dissipation caused by the dust viscosity through dust–dust correlation also
has an effect on the amplitude of the shock wave. With the stronger dissipation, the shock
wave structure becomes steeper and the electrostatic potential (φ) becomes higher. If the
dissipation is neglected, the shock wave structure no longer exists due to the break of the
balance among the dispersive term, the nonlinear term and the dissipative term. The shock
wave evolution figures also depend on α1 and α2. As long as α1 and α2 are chosen as a certain
function, the shock wave will propagate according to this function. It is worth noting that if
a = 0 is satisfied, then the dust charge number Zd will reduce to the case where the plasmas
are containing the two-temperature Boltzmann distributed ions, while γ1 = 0 and γ2 = 0
are satisfied, then it reduces to the case of no dust charge variation. It also indicates that
the shock wave structure will deform due to the transverse perturbations. If the transverse
perturbations are neglected, i.e. η = 0, then the shock wave structure is standard shaped and
the propagation of the shock wave is stable. Transforming the coordinates (ξ, η, τ ) back to
Cartesian coordinates (x, y, t), we have found that there exists a dust hole and it will enlarge as
times goes on. The purpose of studying the transverse perturbations and dissipative effects of
the dust-acoustic shock wave in a non-planar strongly coupled plasma is to gain understanding
on the propagation characteristics of the dust-acoustic shock wave that are of vital importance
in the laboratory plasma as well as in the space plasma which are strongly coupled.
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